Pipeline -

Body of water, Liquid, Blue, Vertebrate, Azure, Organism, Fluid, Aqua

New Stem Cell Technology

Taking advantage of totipotency features of Expanded Potential Stem Cells (EPSCs) and unique properties to development novel animal cloning technologs, CTSCB maps cell lineage atlas from human EPSCs to cell teypes relevant to regenerative medicine and immunotherapies. The new human cell lineage knowledge will directly inform the development of optimised protocols for efficient generation of specific cell types from human EPSCs.

More Info

Plant, Petal

EPSCs for Regenerative Medicine & Human Disease Study

Clinical grade Mesenchymal Stem Cells (MSCs) can be differentiated from human Expanded Potential Stem Cells (EPSCs) which are easier in culture, genetically and epigenetically stable, and allow more efficient genome-editing to generate modified MSCs that provide better therapeutic potential and further reduce their immune rejection after transplantation.

More Info

Water, Liquid, Purple, Petal, Flower, Organism, Violet, Pink, Magenta

EPSCs for Genomic Medicine of Immune Disease

CTSCB uses the Expanded Potential Stem Cells (EPSCs) technology to link genotype to phenotype through genetically defined stem cell-based models of human immune disease.

More Info

Terms & Conditions   |   Privacy Policy   |   Legal Notice

Copyright 2021 CTSCB


  • Yang J, Ryan DJ, Wang W… Lu L, Liu P. (2017). Establishment in Culture of Mouse Expanded Potential Stem Cells. Nature, 550 (7676): 393-397. http://dx.doi.org/0.1038/nature24052
  • Sugimura R, Jha DK, Han A… Doulatov S, Daley GQ. (2017) Haematopoietic Stem and Progenitor Cells from Human Pluripotent Stem Cells. Nature 545 (7655): 432–438. https://doi.org/10.1038/nature22370
  • Veerapandian V, Ackermann JO, Srivastava Y… Yang X, Jauch R. (2018) Directed Evolution of Reprogramming Factors by Cell Selection and Sequencing. Stem Cell Reports 11: 593-606. https://doi.org/10.1016/j.stemcr.2018.07.002
  • Ibarra-Soria X, Jawaid W, Pijuan-Sala B… Göttgens B*, Marioni JC*. (2018) Defining murine organogenesis at single-cell resolution reveals a role for the leukotriene pathway in regulating blood progenitor formation. Nat Cell Biol. 20(2): 127-134. (*Corresponding author) https://doi.org/10.1038/s41556-017-0013-z
  • Gao X, Nowak-Imialek M, Chen X… Niemann H, Liu P. (2019) Establishment of human and pig expanded potential stem cells uncovers conserved signaling requirements. Nature Cell Biology, 21(6): 687-699. http://dx.doi.org/10.1038/s41556-019-0333-2
  • Pijuan-Sala B, Gtiffiths JA, Guibentif C… Marioni JC, Göttgens B. (2019) A single-cell molecular map of mouse gastrulation and early organogenesis. Nature 566(7745) 490-495. https://doi.org/10.1038/s41586-019-0933-9
  • Huang R, Huang Y, Guo Y… Lu M, Li T. (2019) Systematic characterization and prediction of post-translational modification cross-talk between proteins. Bioinformatics 35 (15): 2626-2633. http://dx.doi.org/10.1093/bioinformatics/bty1033
  • Chen ACH, Peng Q, Fong SW, Yeung WSB, Lee YL. (2020) Sirt1 is regulated by miR-135a and involved in DNA damage repair during mouse cellular reprogramming. Aging (Albany NY) 12(8): 7431-7447. https://doi.org/10.18632/aging.103090


  • Yu Y, Tsang JC, Wang C… Dougan G, Liu P. (2016) Single-cell RNA-seq identifies a PD-1hi ILC progenitor and defines its development pathway. Nature 29 (539): 102-106. https://doi.org/10.1038/nature20105
  • CY Tam, WMM Li, YP Gao… CS Lau and VSF Chan. (2017) Human CLEC16A regulates autophagy through modulating mTOR activity. Experimental Cell Research 352: 304-312.  https://doi.org/10.1016/j.yexcr.2017.02.017 
  • Lee JC, Biasci D, Roberts R… Mansfield  Parkes M and Smith KGC. (2017) Genome-wide association study identifies distinct genetic contributions to prognosis and susceptibility in Crohn's disease. Nat Genet 49(2), 262-268.  https://doi.org/10.1038/ng.3755 
  • Yang W, Garrett L, Feng D… Yang Y, Gao B. (2017) Wnt-induced Vangl2 phosphorylation is dose-dependently required for planar cell polarity in mammalian development. Cell Res 27 (12): 1466-1484.  https://doi.org/10.1038/cr.2017.127 
  • IKY Lam, JX Chow, CS Lau, VSF Chan. (2018) MicroRNA-mediated immune regulation in rheumatic diseases. Cancer Lett 9 (431): 201-212.  http://dx.doi.org/10.1016/j.canlet.2018.05.044  
  • Forbester JL, Lees EA, Goulding D… Powrie F, Dougan G. (2018) Interleukin-22 promotes phagolysosomal fusion to induce protection against Salmonella enterica Typhimurium in human epithelial cells. Proc Natl Acad Sci USA 115: 10118-10123. https://doi.org/10.1073/pnas.1811866115
  • Gao B, Ajima R, Yang W… Yamaguchi TP, Yang Y. (2018) Coordinated directional outgrowth and pattern formation by integration of Wnt5a and Fgfsignaling in planar cell polarity. Development 145 (8). https://doi.org/10.1242/dev.163824
  • Li PH, Wong WWY, Leung ENY, Lau CS, Au E. (2020) Novel mutations identified in the first Chinese pedigree of complete C6 deficiency. Clin Transl Immunology 9(7): e1148. https://doi.org/10.1002/cti2.1148 
  • Stewart BJ, Ferdinand JR, Clatworthy MR. (2020) Using single-cell technologies to map the human immune system – implications for nephrology. Nat Rev Nephrol. 16(2): 112-128. https://doi.org/10.1038/s41581-019-0227-3
  • Duque-Correa MA, Maizels RM, Grencis RK, Berriman M. (2020) Organoids - New Models for Host-Helminth Interactions. Trends Parasitol 36(2): 170-181. https://doi.org/10.1016/j.pt.2019.10.013